Recent studies, published in Physical Review D on September 16 and 17, have proposed that microscopic
Planetary Orbits and Primordial Black Holes
It has been theorised that primordial black holes originated from dense regions of the early universe collapsing under their own gravity. Unlike black holes formed from dying stars, these objects are significantly smaller and faster, with estimated speeds of approximately 200 kilometres per second., as per one of the research paper.
The gravitational effects of such black holes on planetary orbits are being studied. It was explained to Science News by Dr Sarah Geller, a cosmologist at the University of California, Santa Cruz, that the wobbles in a planet’s orbit around the Sun could be caused by the gravitational pull of a primordial black hole. A detailed modelling of the solar system has been planned by her team to explore this hypothesis.
Satellite Disturbances as a Detection Method
A separate method involving the observation of satellite movements has been proposed by Dr Sébastien Clesse of Université Libre de Bruxelles, alongside Dr Bruno Bertrand of the Royal Observatory of Belgium. It was suggested that small black holes could subtly alter satellite altitudes, which might allow their detection. Existing probes, it was stated, could potentially be used to measure such disturbances. The method was described as particularly effective for smaller black holes.
Limitations and Complications
The feasibility of detecting primordial black holes was questioned by Dr Andreas Burkert of Ludwig-Maximilians-University Munich. It was noted that other factors, such as solar winds or asteroid interactions, could mimic the gravitational effects attributed to black holes. It was further remarked that while the detection of these objects is considered rare, the possibility cannot be dismissed entirely.
The research has introduced promising approaches to uncovering these elusive objects, with the potential to address significant questions about the universe, including the nature of dark matter.